满分5 > 初中数学试题 >

(2007•南昌)实验与探究: (1)在图1,2,3中,已知平行四边形ABCD的...

(2007•南昌)实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是____________
manfen5.com 满分网
(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
manfen5.com 满分网
归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______
(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点manfen5.com 满分网manfen5.com 满分网,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.
(1)根据平行四边形的性质:对边平行且相等,得出图2,3中顶点C的坐标分别是(e+c,d),(c+e-a,d); (2)分别过点A,B,C,D作x轴的垂线,垂足分别为A1,B1,C1,D1,分别过A,D作AE⊥BB1于E,DF⊥CC1于点F. 在平行四边形ABCD中,CD=BA,根据内角和定理,又∵BB1∥CC1,可推出∠EBA=∠FCD,△BEA≌△CFD. 依题意得出AF=DF=a-c,BE=CF=d-b.设C(x,y).由e-x=a-c,得x=e+c-a. 由y-f=d-b,得y=f+d-b.继而推出点C的坐标. (3)在平行四边形ABCD中,CD=BA,同理证明△BEA≌△CFD(同(2)证明).然后推出AF=DF=a-c,BE=CF=d-b.又已知C点的坐标为(m,n),e-m=a-c,故m=e+c-a.由n-f=d-b,得出n=f+d-b. (4)若GS为平行四边形的对角线,由(3)可得P1(-2c,7c).要使P1在抛物线上, 则有7c=4c2-(5c-3)×(-2c)-c,求出c的实际取值以及P1的坐标, 若SH为平行四边形的对角线,由(3)可得P2(3c,2c), 同理可得c=1,此时P2(3,2); 若GH为平行四边形的对角线,由(3)可得(c,-2c), 同理可得c=1,此时P3(1,-2);故综上所述可得解. 【解析】 (1)(e+c,d),(c+e-a,d).(2分) (2)分别过点A,B,C,D作x轴的垂线,垂足分别为A1,B1,C1,D1, 分别过A,D作AE⊥BB1于E,DF⊥CC1于点F. 在平行四边形ABCD中,CD=BA, 又∵BB1∥CC1, ∴∠EBA+∠ABC+∠BCF=∠ABC+∠BCF+∠FCD=180度. ∴∠EBA=∠FCD. 又∵∠BEA=∠CFD=90°, ∴△BEA≌△CFD.(5分) ∴AE=DF=a-c,BE=CF=d-b. 设C(x,y). 由e-x=a-c,得x=e+c-a. 由y-f=d-b,得y=f+d-b. ∴C(e+c-a,f+d-b).(6分) (此问解法多种,可参照评分) (3)m=c+e-a,n=d+f-b.或m+a=c+e,n+b=d+f.(10分) (4)若GS为平行四边形的对角线,由(3)可得P1(-2c,7c). 要使P1在抛物线上, 则有7c=4c2-(5c-3)×(-2c)-c, 即c2-c=0. ∴c1=0(舍去),c2=1.此时P1(-2,7).(11分) 若SH为平行四边形的对角线,由(3)可得P2(3c,2c), 同理可得c=1,此时P2(3,2).(12分) 若GH为平行四边形的对角线,由(3)可得(c,-2c), 同理可得c=1,此时P3(1,-2).(13分) 综上所述,当c=1时,抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形. 符合条件的点有P1(-2,7),P2(3,2),P3(1,-2).(14分)
复制答案
考点分析:
相关试题推荐
(2008•晋江市质检)如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点F、A出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点E时,两个点都停止运动.
(1)请在6×8的网格纸中画出运动时间t为2秒时的线段PQ;manfen5.com 满分网
(2)如图2,动点P、Q在运动的过程中,PQ能否垂直于BF?请说明理由;
(3)在动点P、Q运动的过程中,△PQB能否成为等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.
查看答案
(2007•赤峰)某私立中学准备招聘教职员工60名,所有员工的月工资情况如下:
员工管理人员教学人员
人员结构校长副校长部处主任教研组长高级教师中级教师初级教师
员工人数/人124103
每人月工资/元20000170002500230022002000900
请根据上表提供的信息,回答下列问题:
(1)如果学校准备招聘“高级教师”和“中级教师”共40名(其他员工人数不变),其中高级教师至少要招聘13人,而且学校对高级、中级教师的月支付工资不超过83000元,按学校要求,对高级、中级教师有几种招聘方案?
(2)(1)中的哪种方案对学校所支付的月工资最少?并说明理由;
(3)在学校所支付的月工资最少时,将上表补充完整,并求所有员工月工资的中位数和众数.
查看答案
(2012•赣州模拟)如图某幢大楼顶部有广告牌CD.张老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进14米、站在点B处,测得广告牌顶端点C的仰角为45°.(取manfen5.com 满分网,计算结果保留一位小数)
(1)求这幢大楼的高DH;
(2)求这块广告牌CD的高度.

manfen5.com 满分网 查看答案
一个不透明的盒子中放有4张扑克牌,牌面上的数字分别3,4,5,x,这些扑克牌除数字外都相同.甲、乙两人每次同时从盒子中各随机摸出1张牌,并计算摸出的这2张牌面上的数字之和.记录后都将牌放回盒子中搅匀,进行重复实验.实验数据如下表:
摸牌总次数1020306090120180240330450
“和为9”出现的频数19142426375882109150
“和为9”出现的频率0.100.450.470.400.290.310.320.340.330.33
解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为9”的频率将稳定在它的概率附近,试估计出现“和为9”的概率;
(2)根据(1),若x是不等于3,4,5的自然数,试求x的值.
查看答案
如图,两个全等的直角三角形△ABC和△A1B1C1中,∠ACB=∠A1C1B1=90°,两条相等的直角边AC,A1C1在同一直线上,A1B1与AB交于O,AB与B1C1交于E1,A1B1与BC交于E.
(1)写出图中除△ABC≌△A1B1C1外的所有其它各组全等三角形(不再连线和标注字母);
(2)求证:B1E1=BE.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.