满分5 > 初中数学试题 >

(2006•凉山州)如图所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4...

(2006•凉山州)如图所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4,BC=6,AD=8,点P、Q同时从A点出发,分别做匀速运动,其中点P沿AB、BC向终点C运动,速度为每秒2个单位,点Q沿AD向终点D运动,速度为每秒1个单位,当这两点中有一个点到达自己的终点时,另一个点也停止运动,设这两个点从出发运动了t秒.
(1)动点P与Q哪一点先到达自己的终点?此时t为何值;
(2)当O<t<2时,写出△PQA的面积S与时间t的函数关系式;
(3)以PQ为直径的圆能否与CD相切?若有可能,求出t的值或t的取值范围;若不可能,请说明理由.

manfen5.com 满分网
(1)P点的运动的总路程为AB+BC=10,Q点的总路程为AD=8,可根据它们的速度求出各自到达终点时用的时间,进行比较即可; (2)要求三角形PQA的面积就要求出三角形的底和高,底AQ可以用时间表示出来,高可以根据AP和∠A的度数来求;如果过B引AD边的垂线,那么∠A的余弦值就是(AD-BC)÷AB,据此可求出∠A的度数,也就能求出三角形APQ的高;然后根据三角形的面积公式即可得出关于S,t的函数关系式; (3)当P在AB上时,即0<t<2,显然不可能和CD相切. 当P在BC上时,即2≤t≤5时,如果圆与CD相切,设切点为K,连接圆心和K,这条线段就是直角梯形DPOD的中位线,由此可用CP,DO表示出OK,也就可以用含t的式子表示出圆的直径;如果过P引AD的垂线,那么CP,DQ的差,CD,PQ这三者恰好可以根据勾股定理来得出关于t的方程,解方程后即可求出t的值. 【解析】 (1)∵当P到c点时,t=5(秒), 当Q到D点时,t=8(秒), ∴点P先到达终点,此时t为5秒; (2)如图,作BE⊥AD于点E,PF⊥AD于点F. AE=2,在Rt△ABE中∠A=60°,PF=t, ∴s=t2(0<t<2); (3)当0<t<2时,以PO为直径的圆与CD不可能相切. 当2≤t≤5时,设以PQ为直径的⊙O与CD相切于点K, 则有PC=10-2t,DQ=8-t,OK⊥DC. ∵OK是梯形PCDQ的中位线, ∴PQ=20K=PC+DO=18-3t. 在直角梯形PCDQ中,PO2=CD2+(DO-CP)2, 解得:t=. ∵>5,不合题意舍去. 2<<5, 因此,当t=时,以PQ为直径的圆与CD相切.
复制答案
考点分析:
相关试题推荐
(2004•徐州)已知抛物线y=(1-m)x2+4x-3开口向下,与x轴交于A(x1,0)和B(x2,0)两点,其中x1<x2
(1)求m的取值范围;
(2)若x12+x22=10,求抛物线的解析式,并在给出的直角坐标系中画出这条抛物线;
(3)设这条抛物线的顶点为C,延长CA交y轴于点D.在y轴上是否存在点P,使以P、B、O为顶点的三角形与△BCD相似?若存在,求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2004•徐州)如图,⊙O1与⊙O2相交于点A、B,顺次连接O1、A、O2、B四点,得四边形O1AO2B.
(1)根据我们学习矩形、菱形、正方形性质时所获得的经验,探求图中的四边形有哪些性质(用文字语言写出4条性质)
性质1______
性质2______
性质3______
性质4______
(2)设⊙O1的半径为R,⊙O2的半径为r(R>r),O1,O2的距离为d.当d变化时,四边形O1AO2B的形状也会发生变化.要使四边形O1AO2B是凸四边形(把四边形的任一边向两方延长,其他各边都在延长所得直线同一旁的四边形).则d的取值范围是______

manfen5.com 满分网 查看答案
(2004•徐州)已知:如图,⊙O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2manfen5.com 满分网,AB=BC=3.求BD和AC的长.

manfen5.com 满分网 查看答案
(2004•徐州)我市某乡规定:种粮的农户均按每亩年产量750公斤、每公斤售价1.1元来计算每亩的年产值.年产值乘农业税的税率就是应缴的农业税,另外还要按农业税的20%上缴“农业税附加”(“农业税附加”主要用于村级组织的正常运转需要).
(1)去年我市农业税的税率为7%,王老汉一家种了10亩水稻,他一共要上缴多少元?
(2)今年,国家为了减轻农民负担,鼓励种粮,降低了农业税税率,并且每亩水稻由国家直接补贴20元(可抵缴税款).王老汉今年仍种10亩水稻,他掰着手指一算,高兴地说:“这样一减一补,今年可以比去年少缴497元.”请你求出今年我市的农业税的税率是多少?(要有解题过程)
查看答案
(2004•徐州)某校初三(1)班、(2)班各有49名学生,两班在一次数学测验中的成绩统计如下表:
班级平均分众数中位数标准差
一班79708719.8
二班7970795.2
(1)请你对下面的一段话给予简要分析:初三(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班里可算上游了!”
(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.