(2003•新疆)已知:如图,正方形ABCD的周长为4a,四边形EFGH的四个顶点E、F、G、H分别在AB、BC、CD、DA上滑动,在滑动过程中,始终有EH∥BD∥FG,且EH=FG,那么四边形EFGH的周长是否可求?若能求出,它的周长是多少?若不能求出,请说明理由.
考点分析:
相关试题推荐

(2003•新疆)二次函数y=ax
2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.
(1)根据图象确定a、b、c的符号,并说明理由;
(2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.
查看答案
(2003•新疆)(1)如图,锐角的正弦和余弦都随着锐角的确定而确定,也随着其变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值的变化规律;
(2)根据你探索到的规律,试比较18°,34°,52°,65°,88°,这些角的正弦值的大小和余弦值的大小;
(3)比较大小:(在空格处填写“<”或“>”或“=”)
若∠α=45°,则sinα______cosα;若∠α<45°,则sinα______cosα;若∠α>45°,则sinα______cosα;
(4)利用互余的两个角的正弦和余弦的关系,比较下列正弦值和余弦值的大小:
sin10°,cos30°,sin50°,cos70°.
查看答案
(2003•新疆)已知:如图1,点P在⊙O外,PC是⊙O的切线、切点为C,直线PO与⊙O相交于点A、B.

(1)试探求∠BCP与∠P的数量关系;
(2)若∠A=30°,则PB与PA有什么数量关系?
(3)∠A可能等于45°吗?若∠A=45°,则过点C的切线与AB有怎样的位置关系?(图2供你解题使用)
(4)若∠A>45°,则过点C的切线与直线AB的交点P的位置将在哪里?(图3供你解题使用)
查看答案
(2003•新疆)某校把一块形状近似于直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,BC=60米,∠A=36度.
(1)若入口E在边AB上,且与A、B等距离,请你在图中画出入口E到C点的最短路线,并求出最短路线CE的长.(保留整数)
(2)若线段CD是一条水渠,并且D点在边AB上,已知水渠造价为50元/米,水渠路线应如何设计才能使造价最低,请你画出水渠路线,并求出最低造价.
查看答案
(2003•新疆)已知:如图,AB是⊙O的直径,CD是弦,AE⊥CD,垂足是E,BF⊥CD,垂足是F,求证:CE=DF,小明同学是这样证明的:
证明:∵

订正:∴CM=MD,∵

,∴

∴ME-CM=MF-MD
即CE=DF横线及问号是老师给他的,老师还写了如下评语:“你的解题思路很清晰,但证明过程欠完整,相信你再思考一下,一定能写出完整的证明过程”.请你帮助小明订正此题,好吗?
查看答案