满分5 > 初中数学试题 >

(2003•上海)如图1所示,在正方形ABCD中,AB=1,是以点B为圆心,AB...

(2003•上海)如图1所示,在正方形ABCD中,AB=1,manfen5.com 满分网是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=manfen5.com 满分网时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.

manfen5.com 满分网
(1)根据等腰三角形的三线合一进行证明,能够熟练运用等腰直角三角形的性质和切线长定理发现G为线段EF的中点; (2)根据切线长定理、正方形的性质得到有关的线段用x,y表示,再根据勾股定理建立函数关系式. (3)结合(2)中的函数关系式,求得x的值.分两种情况分别分析,根据切线长定理找到角之间的关系,从而发现正方形,根据正方形的性质得到两个角对应相等,从而证明三角形相似. (1)证明:∵∠DEF=45°, ∴∠DFE=90°-∠DEF=45°. ∴∠DFE=∠DEF. ∴DE=DF. 又∵AD=DC, ∴AE=FC. ∵AB是圆B的半径,AD⊥AB, ∴AD切圆B于点A. 同理:CD切圆B于点C. 又∵EF切圆B于点G, ∴AE=EG,FC=FG. ∴EG=FG,即G为线段EF的中点. (2)【解析】 根据(1)中的线段之间的关系,得EF=x+y,DE=1-x,DF=1-y, 根据勾股定理,得: (x+y)2=(1-x)2+(1-y)2 ∴y=(0<x<1). (3)【解析】 当EF=时,由(2)得EF=EG+FG=AE+FC, 即x+=, 解得x1=,x2=. 经检验x1=,x2=是原方程的解. ①当AE=时,△AD1D∽△ED1F, 证明:设直线EF交线段DD1于点H,由题意,得: △EDF≌△ED1F,EF⊥DD1且DH=D1H. ∵AE=,AD=1, ∴AE=ED. ∴EH∥AD1,∠AD1D=∠EHD=90°. 又∵∠ED1F=∠EDF=90°, ∴∠ED1F=∠AD1D. ∴D1F∥AD, ∴∠ADD1=∠DD1F=∠EFD=45°, ∴△ED1F∽△AD1D. ②当AE=时,△ED1F与△AD1D不相似.
复制答案
考点分析:
相关试题推荐
(2003•上海)已知在平面直角坐标系内,O为坐标原点,A、B是x轴上的两点,点A在点B的左侧,二次函数y=ax2+bx+c(a≠0)的图象经过点A、B,与y轴相交于点C.
(1)如图情况下:a、c的符号之间有何关系?
(2)如果线段OC的长度是线段OA、OB长度的比例中项,试证a、c互为倒数;
(3)在(2)的条件下,如果b=-4,AB=4manfen5.com 满分网,求a、c的值.

manfen5.com 满分网 查看答案
(2003•上海)嘉兴月河桥拱形可以近似看作抛物线的一部分.在大桥截面1:1000的比例图上,跨度AB=5cm,拱高OC=0.9cm,线段DE表示河流宽度,DE∥AB,如图(1)在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图(2).
manfen5.com 满分网
(1)求出图(2)上以这一部分抛物线为图象的函数解析式,并写出自变量的取值范围;
(2)如果DE与AB的距离OM=0.45cm,求河流宽度(备用数据:manfen5.com 满分网,计算结果精确到1米).
查看答案
(2003•上海)如图,已知:△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足.
求证:(1)G是CE的中点;(2)∠B=2∠BCE.

manfen5.com 满分网 查看答案
(2003•上海)已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.

manfen5.com 满分网 查看答案
(2006•大连)某校初二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以统一标准划分为“不合格”“合格”“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试根据统计图提供的信息回答下列问题:
(1)这32名学生培训前考分的中位数所在的等级是______,培训后考分的中位数所在等级是______
(2)这32名学生经过培训,考分等级“不合格”的百分比由______下降到______
(3)估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共有______名.
(4)你认为上述估计合理吗?理由是什么?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.