(2003•上海)如图1所示,在正方形ABCD中,AB=1,

是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D
1EF,当EF=

时,讨论△AD
1D与△ED
1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.
考点分析:
相关试题推荐
(2003•上海)已知在平面直角坐标系内,O为坐标原点,A、B是x轴上的两点,点A在点B的左侧,二次函数y=ax
2+bx+c(a≠0)的图象经过点A、B,与y轴相交于点C.
(1)如图情况下:a、c的符号之间有何关系?
(2)如果线段OC的长度是线段OA、OB长度的比例中项,试证a、c互为倒数;
(3)在(2)的条件下,如果b=-4,AB=4

,求a、c的值.
查看答案
(2003•上海)嘉兴月河桥拱形可以近似看作抛物线的一部分.在大桥截面1:1000的比例图上,跨度AB=5cm,拱高OC=0.9cm,线段DE表示河流宽度,DE∥AB,如图(1)在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图(2).

(1)求出图(2)上以这一部分抛物线为图象的函数解析式,并写出自变量的取值范围;
(2)如果DE与AB的距离OM=0.45cm,求河流宽度(备用数据:

,计算结果精确到1米).
查看答案
(2003•上海)如图,已知:△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足.
求证:(1)G是CE的中点;(2)∠B=2∠BCE.
查看答案
(2003•上海)已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.
查看答案
(2006•大连)某校初二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以统一标准划分为“不合格”“合格”“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试根据统计图提供的信息回答下列问题:
(1)这32名学生培训前考分的中位数所在的等级是______,培训后考分的中位数所在等级是______.
(2)这32名学生经过培训,考分等级“不合格”的百分比由______下降到______.
(3)估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共有______名.
(4)你认为上述估计合理吗?理由是什么?
查看答案