(2002•南昌)甲、乙两同学做“投球进筐”游戏.商定:每人玩5局,每局在指定线外将一个皮球投往筐中,一次未进可再投第二次,以此类推,但最多只能投6次,当投进后,该局结束,并记下投球次数;当6次都未投进时,该局也结束,
并记为“×”.两人五局投球情况如下:
| 第一局 | 第二局 | 第三局 | 第四局 | 第五局 |
甲 | 5次 | × | 4次 | × | 1次 |
乙 | × | 2次 | 4次 | 2次 | × |
(1)为了计算得分,双方约定:记“×”的该局得0分,其他局得分的计算方法要满足两个条件:
①投球次数越多,得分越低;②得分为正数.请你按约定的要求,用公式、表格、语言叙述等方式选取其中一种写出一个将其他局的投球次数n换算成得分M的具体方案;
(2)请根据上述约定和你写出的方案,计算甲、乙两人的每局得分,填入下面的表格中,并从平均分的角度来判断谁投得更好.
| 第一局 | 第二局 | 第三局 | 第四局 | 第五局 |
甲得分 | | | | | |
乙得分 | | | | | |
考点分析:
相关试题推荐
(2002•江西)已知抛物线y=-x
2+bx+c与x轴的两个交点分别为A(m,0),B(n,0),且m+n=4,

.
(1)求此抛物线的表达式;
(2)设此抛物线与y轴的交点为C,过C作一平行于x轴的直线交抛物线于另一点P,请求出△ACP的面积S
△ACP.
查看答案
(2002•南昌)有一个只许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过道口,此时,自己前面还有36个人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校.
(1)此时,若绕道而行,要15分钟到达学校,从节省时考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?
(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?
查看答案
(2004•云南)如图,已知△ABC内接于⊙O,AE切⊙O于点A,BC∥AE.
(1)求证:△ABC是等腰三角形;
(2)设AB=10cm,BC=8cm,点P是射线AE上的点,若以A、P、C为顶点的三角形与△ABC相似,问这样的点有几个并求AP的长.
查看答案
(2002•南昌)如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.
(1)求证:AF⊥CD;
(2)在你连接BE后,还能得出什么新的结论?请写出三个(不要求证明).
查看答案
(2002•南昌)分别解不等式2x-3≤5(x-3)和

,并比较x、y的大小.
查看答案