满分5 > 初中数学试题 >

(2002•朝阳区)已知:如图,△ABC内接于⊙O,AD是⊙O的直径,点E、F分...

(2002•朝阳区)已知:如图,△ABC内接于⊙O,AD是⊙O的直径,点E、F分别在AB、AC的延长线上,EF交⊙O于点M、N,交AD于点H,H是OD的中点,manfen5.com 满分网,EH-HF=2.设∠ACB=a,tana=manfen5.com 满分网,EH和HF是方程x2-(k+2)x+4k=0的两个实数根.
(1)求EF和HF的长;
(2)求BC的长.

manfen5.com 满分网
(1)根据根与系数的关系,可以得到EH+HF=k+2②,EH•HF=4k>0③,再结合已知EH-HF=2,可求k的值,再把k的值代入方程,解方程可求EH、HF,从而可求EH; (2)连接BD、CD,由于AD是直径,根据垂径定理可知,AD⊥EF,再利用同角的余角相等,可知∠E=∠1,再利用圆周角的性质,可知∠E=∠1=∠α,从而tan∠E=,结合EH=8,可求AH,再利用勾股定理可求AE,在Rt△AHF中,利用勾股定理可求AF,在Rt△ABD中,由于tan∠1=,可设AB=3m,BD=4m,利用勾股定理可知AD=5m,而H是OD中点,从而AD=AH,由于AH=6,可求AD、m的值,从而可求AB,利用∠α=∠E,再加上一个公共角,可证△ABC∽△AFE,可得比例线段,容易求出BC. 【解析】 (1)依题意,及一元二次方程根与系数关系,得 △=[-(k+2)]2-4×4k>0,① EH+HF=k+2,② EH•HF=4k>0,③ 又EH-HF=2④ 由②、③、④得k=12, 当k=12时,①成立. 把k=12代入原方程解得x1=8,x2=6, ∴EH=8,HF=6. (2)解法一: 连接BD, ∵AD是⊙O的直径, ∴∠ABD=90°, ∵∠1=∠a, ∵, ∴AD⊥EF,即∠AHE=∠AHF=90°, ∴∠E=∠1=∠a, 在Rt△AEH中,tanE==tana=,又EH=8, ∴AH=6, 由勾股定理得AE=10, 在Rt△AHF中,AH=HF=6, 由勾股定理得AF=6 在Rt△ABD中,tan∠1==tana=, 设AB=3m,则BD=4m,由勾股定理得AD=5m ∵H是OD的中点, ∴AH=AD ∴AD=AH=×6=8 ∴5m=8,解得m=, ∴AB=3m=, ∵∠E=∠a,∠BAC=∠FAE, ∴△ABC∽△AFE ∴ ∴BC=; 解法二: 同解法一求出AE=10,AD=8 连接CD, ∵AH=HF,且AH⊥HF, ∴∠HAF=∠F=45° ∵AD为⊙O直径, ∴∠ACD=90°,∠ADC=45° ∴AC=AD•sin∠ADC=AD•sin45°=4, 以下同解法一求得BC=.
复制答案
考点分析:
相关试题推荐
(2002•朝阳区)已知:在内角不确定的△ABC中,AB=AC,点E、F分别在AB、AC上,EF∥BC,平行移动EF,如果梯形EBCF有内切圆.
manfen5.com 满分网时,sinB=manfen5.com 满分网
manfen5.com 满分网时,sinB=manfen5.com 满分网(提示:manfen5.com 满分网=manfen5.com 满分网);
manfen5.com 满分网时,sinB=manfen5.com 满分网
(1)请你根据以上所反映的规律,填空:当manfen5.com 满分网时,sinB的值等于______
查看答案
(2002•朝阳区)某空调厂的装配车间,原计划用若干天组装150台空调,厂家为了使空调提前上市,决定每天多组装3台,这样提前3天超额完成了任务,总共比原计划多组装6台,问原计划每天组装多少台?
查看答案
(2002•朝阳区)已知:如图,在正方形ABCD中,E是CB延长线上一点,EB=manfen5.com 满分网BC,如果F是AB的中点,请你在正方形ABCD上找一点,与F点连接成线段,并说明它和AE相等的理由.
【解析】
连接______,则______=AE.

manfen5.com 满分网 查看答案
(2002•朝阳区)计算:manfen5.com 满分网
查看答案
(2002•朝阳区)解不等式组manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.