满分5 > 初中数学试题 >

如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45...

如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.

(1)求证:BF=2AE;

(2)若CD=满分5 manfen5.com,求AD的长.

满分5 manfen5.com

 

 

(1)见解析     (2)2+ 【解析】 试题分析:(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AF,从而得证。 (2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解。 【解析】 (1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形。∴AD=BD。 ∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°。∴∠CAD=∠CBE。 在△ADC和△BDF中,∠CAD=∠CBF,AD=BD,∠ADC=∠BDF=90°, ∴△ADC≌△BDF(ASA)。∴BF=AC。 ∵AB=BC,BE⊥AC,∴AC=2AE。∴BF=2AE。 (2)∵△ADC≌△BDF,∴DF=CD=。 在Rt△CDF中,。 ∵BE⊥AC,AE=EC,∴AF=CF=2。 ∴AD=AF+DF=2+。
复制答案
考点分析:
相关试题推荐

一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.

满分5 manfen5.com满分5 manfen5.com

请你根据以上统计图提供的信息,回答下列问题:

(1)本次调查的人数为    人;

(2)图①中,a=    ,C等级所占的圆心角的度数为    度;

(3)请直接在答题卡中补全条形统计图.

 

查看答案

计算:满分5 manfen5.com

 

查看答案

已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离和最大距离分别是    

 

查看答案

有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第8个等式为    

 

查看答案

如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是    

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.