满分5 > 初中数学试题 >

如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D...

如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.

满分5 manfen5.com

(1)求证:CG是⊙O的切线.

(2)求证:AF=CF.

(3)若∠EAB=30°,CF=2,求GA的长.

 

(1)连接OC,由C是劣弧AE的中点,根据垂径定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根据切线的判定定理即可得到结论。 (2)连接AC、BC,根据圆周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,则∠CDB=90°,根据等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF。 (3)2 【解析】 分析:(1)连接OC,由C是劣弧AE的中点,根据垂径定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根据切线的判定定理即可得到结论。 (2)连接AC、BC,根据圆周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,则∠CDB=90°,根据等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF。 (3)在Rt△ADF中,由于∠DAF=30°,FA=FC=2,根据含30度的直角三角形三边的关系得到DF=1,AD=,再由AF∥CG,根据平行线分线段成比例得到DA:AG=DF:CF然后把DF=1,AD=,CF=2代入计算即可。 【解析】 (1)证明:如图,连接OC,  ∵C是劣弧AE的中点,∴OC⊥AE。 ∵CG∥AE,∴CG⊥OC。 ∵OC是⊙O的半径,∴CG是⊙O的切线。 (2)证明:连接AC、BC, ∵AB是⊙O的直径,∴∠ACB=90°。 ∴∠2+∠BCD=90°。 ∵CD⊥AB,∴∠B+∠BCD=90°。∴∠B=∠2。 ∵AC弧=CE弧,∴∠1=∠B。 ∴∠1=∠2。∴AF=CF。 (3)在Rt△ADF中,∠DAF=30°,FA=FC=2,∴DF=AF=1。 ∴AD=DF=。 ∵AF∥CG,∴DA:AG=DF:CF,即:AG=1:2。 ∴AG=2。
复制答案
考点分析:
相关试题推荐

某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.

(1)求这两种商品的进价.

(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?

 

查看答案

“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110,到达B处,测得“香顶”N的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:满分5 manfen5.com).

满分5 manfen5.com

 

 

查看答案

如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.

满分5 manfen5.com

(1)求点C的坐标及反比例函数的解析式.

(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.

 

查看答案

一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为满分5 manfen5.com

(1)求袋子里2号球的个数.

(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.

 

查看答案

如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.