满分5 > 初中数学试题 >

如图,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,...

如图,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A、C重合),过点F分别作x轴、y轴的垂线,垂足为G、E.设四边形BCFE的面积为S1,四边形CDGF的面积为S2,△AFG的面积为S3

说明: 满分5 manfen5.com

(1)试判断S1、S2,的关系,并加以证明;

(2)当S3:S1=1:3时,求点F的坐标;

(3)如图,在(2)的条件下,把△AEF沿对角线AC所在直线平移,得到△A’E’F’,且A’、F’两点始终在直线AC上,是否存在这样的点E’,使点E’到x轴的距离与到y轴的距离比是5:4.若存在,请求出点E’的坐标;若不存在,请说明理由.

说明: 满分5 manfen5.com

 

(1)S1=S2;(2)F(4,3);(3)存在满足条件的E′坐标分别是( 6,) (,) 【解析】 试题分析:(1)两者应该相等,由于四边形ADCB是矩形,那么对角线平分矩形的面积,同理OF也平分矩形AEFG的面积,由此就不难得出S1=S2了; (2)S3:S2=1;3,也就能得出S△AGF:S△ADC=1:4,根据相似三角形的面积比等于相似比的平方,可得出OF:OC=1:2,即F为OC中点.由此可根据C、D的坐标直接求出F的坐标; (3)由于A′F′始终在OC上,因此EE′所在的直线必平行于OC,可先求出直线EE′的解析式,然后根据E′横、纵坐标的比例关系来设出E′的坐标,代入直线EE′中即可求出E′A的坐标. (1)S1=S2 ∵FE⊥y轴,FG⊥x轴,∠BAD=90°, ∴四边形AEFG是矩形. ∴AE=GF,EF=AG. ∴S△AEF=S△AFG, 同理S△ABC=S△ACD. ∴S△ABC-S△AEF=S△ACD-S△AFG. 即S1=S2. (2)∵FG∥CD, ∴△AFG∽△ACD. ∵CD=BA=6,AD=BC=8, ∴FG=3,AG=4. ∴F(4,3); (3)∵△A′E′F′是由△AEF沿直线AC平移得到的,且A′、F′两点始终在直线AC上, ∴点E′在过点E(0,3)且与直线AC平行的直线l上移动. ∵直线AC的解析式是y=x, ∴直线L的解析式是y=x+3. 设点E′为(x,y), ∵点E′到x轴的距离与到y轴的距离比是5:4, ∴|y|:|x|=5:4. ∴E′(6,7.5); ∴存在满足条件的E′坐标分别是( 6,) (,). 考点:动点问题的综合题
复制答案
考点分析:
相关试题推荐

水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见右表:

说明: 满分5 manfen5.com

(1)2012年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元?(收益=销售额-成本)

(2)2013年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2012年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?

(3)已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg.根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?

 

查看答案

为了加强视力保护意识,小明想在长为3.2米,宽为4.3米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、丙三位同学设计方案新颖,构思巧妙.

(1)甲生的方案:如下页图1,将视力表挂在墙ABEF和墙ADGF的夹角处(不考虑视力表与墙角AF之间的距离),被测试人站立在对角线AC上,问:甲生的设计方案是否可行?请说明理由.

说明: 满分5 manfen5.com

(2)乙生的方案:如图2,将视力表挂在墙CDGH上,在墙ABEF上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF        米处.

(3)丙生的方案:如图3,根据测试距离为5m的大视力表制作一个测试距 为3m的小视力表.如果大视力表中“E”的长是3.5cm,那么小视力表中相应“E”的长是多少cm?

 

查看答案

下面是某同学对多项式(x2—4x+2)(x2—4x+6)+4进行分解因式的过程。

【解析】
设x2—4x=y.

原式=(y+2)(y+6)+4  (第一步)

=y2+8y+16     (第二步)

=(y+4)2        (第三步)

=(x2—4x+4)2    (第四步)

回答下列问题:

(1)该同学第二步到第三步运用了分解因式的            

A.提取公因式            B.逆用平方差公式            C.逆用完全平方公式

(2)该同学分解因式的结果不正确,应更正为              

(3)试分解因式n(n+1)(n+2)(n+3)+1.

 

查看答案

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B。

说明: 满分5 manfen5.com

(1)求证:△ADF∽△DEC;

(2)若AB=4,AD=3说明: 满分5 manfen5.com,AE=3,求AF的长。

 

查看答案

“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务. 王刚同学在开学初针对暑假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:

时间分组(时)

0.5~20.5

20.5~40.5

40.5~60.5

60.5~80.5

80.5~100.5

频数(人)

20

25

30

15

10

(1)在这个问题中的样本是              ,其中暑假做家务的时间在20.5~40.5的频率为_____.

(2)根据表中数据补全图中的频数分布直方图.

说明: 满分5 manfen5.com

(3)样本的中位数所在时间段的范围是              .

(4)若该学校有学生1260人,那么约有     名学生在暑假做家务的时间在40.5~100.5小时之间。

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.