某校举办八年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后计入总分。下表为甲、乙、丙三位同学的得分情况(单位:分)
|
七巧板拼图 |
趣题巧解 |
数学应用 |
魔方复原 |
甲 |
66 |
89 |
86 |
68 |
乙 |
66 |
60 |
80 |
68 |
丙 |
66 |
80 |
90 |
68 |
(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算计入总分,根据猜测,求出甲的总分;
(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖。现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问:甲能否获得这次比赛的一等奖?
如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA
与⊙O的另一个交点为E,连结AC,CE。
(1)求证:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的长。
一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外都相同。
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于,问至少取出了多少个黑球?
如图,抛物线与x轴交于点A,B,与
轴交于点C。过点C作CD∥x轴,交抛物线的对称轴于点D,连结BD。已知点A坐标为(-1,0)。
(1)求该抛物线的解析式;
(2)求梯形COBD的面积。
如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上。
(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;
(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图。
如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长。