第九届中国(北京)国际园林博览会将于2013年的5月18日至11月18日在丰台区举办.据相关介绍,本届园博会在占地面积、建设规模、园区特色、标志建筑、绿色低碳等方面均超过以往任何一届,目前已有120多个国内外城市参展.业界专家预测,北京园博会接待游客将达20 000 000人次,堪称园林版的“奥运会”.将20 000 000用科学记数法表示为
A.
B.
C.
D.![]()
-2的倒数是
A.2 B.-2 C.
D.![]()
袋中装有除数字不同其它都相同的六个小球,球上分别标有数字1,2,3,4,5,6.
(1)从袋中摸出一个小球,求小球上数字小于3的概率;
(2)将标有1,2,3数字的小球取出放入另外一个袋中,分别从两袋中各摸出一个小球,
求数字之和为偶数的概率.(要求用列表法或画树状图求解)
如图,在直角坐标系中,点D在y轴上,四边形ABCD是等腰梯形,AB∥CD。已知, DO⊥AB, OE⊥BC,E、O分别为垂足,BC="BO" ,O为坐标原点。

(1) 求证:DO=EO
(2) 已知:C点坐标为(4 , 8),
①求等腰梯形ABCD的腰长;
②问题探究:在这个坐标平面内是否存在点F,使以点F、D、O、E为顶点的四边形是菱形?若存在,请求出所有符合要求的F点的坐标,并说明理由;若不存在,请说明理由。
如图,已知抛物线
(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.

(1)点B的坐标为 ,点C的坐标为 (用含b的代数式表示);
(2)若b=8,请你在抛物线上找点P,使得△PAC是直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你探索,在(1)的结论下,在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q的坐标;如果不存在,请说明理由.
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系;

(1)根据图中信息,说明图中点(2,0)的实际意义;
(2)求图中线段AB所在直线的函数解析式和甲乙两地之间的距离;
(3)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
