满分5 > 初中数学试题 >

(1)已知方程x2+px+q=0(p2-4q≥0)的两根为x1、x2,求证:x1...

(1)已知方程x2+px+q=0(p2-4q≥0)的两根为x1、x2,求证:x1+x2=-p,x1·x2=q.(2)已知抛物线y=x2+px+q与x轴交于点A、B,且过点(―1,―1),设线段AB的长为d,当p为何值时,d2取得最小值并求出该最小值.

 

(1)由根与系数的关系 (2)当p=2时,d 2的最小值是4。 【解析】 试题分析:(1)证明:∵a=1,b=p,c=q,p2﹣4q≥0, ∴。 (2)【解析】 把(﹣1,﹣1)代入y=x2+px+q得p﹣q=2,即q=p﹣2。 设抛物线y=x2+px+q与x轴交于A、B的坐标分别为(x1,0)、(x2,0)。 ∵d=|x1﹣x2|, ∴d2=(x1﹣x2)2=(x1+x2)2﹣4 x1?x2=p2﹣4q=p2﹣4p+8=(p﹣2)2+4。 ∴当p=2时,d 2的最小值是4。 考点:抛物线
复制答案
考点分析:
相关试题推荐

若两圆的圆心距d满足等式说明: 满分5 manfen5.com,且两圆的半径是方程说明: 满分5 manfen5.com的两个根,试判断这两圆的位置关系.

 

查看答案

商场购进某种新商品的每件进价为120元,在试销期间发现,当每件商品的售价为130元时,每天可销售70件;当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答下列问题.

(1)当每件商品的售价为140元时,每天可销售                件商品,商场每天可盈利                   元;

(2)设销售价定为x元时,商品每天可销售                          件,每件盈

                   元;

(3)在商品销售正常的情况下,每件商品的销售价定为多少元时,商场每天盈利可达到1500元(提示:盈利=售价-进价);

(4)能不能通过适当的降价,使商场的每天盈利达到最大.若能,请求出售价多少元时每天盈利最大,每天最大盈利为多少元(若能,可直接写出答案)?若不能,请说明理由.

 

查看答案

证明命题“等腰三角形两腰上的高线相等”.(根据证明几何命题的格式填空,并完成证明)

已知:如图,在△ABC中,ABACCD⊥AB,BEAC

说明: 满分5 manfen5.com

求证:                                         

证明:                                         

 

查看答案

某中学八年级共有400名学生,学校为了增强学生的安全意识,在本年级进行了一次安全知识测验,为了了解这测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.

说明: 满分5 manfen5.com

(1)图中成绩为79.5~89.5小组的频率是 ,成绩为89.5~99.5小组的频数是  

(2)这次测验中,假定成绩在70分以下为不合格,需重新学习安全知识,则八年级全体学生中需要重新学习的学生约为多少人?

 

查看答案

如图,一道斜坡的坡比(BCAC的长度之比)为1︰10,AC=12m,求斜边AB的长(结果保留根号).说明: 满分5 manfen5.com

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.