有一个装有进出水管的容器,单位时间内进水管与出水管的进出水量均一定,已知容器的容积为600升,图中线段OA与BC,分别表示单独打开一个进水管和单独打开一个出水管时,容器的存水量Q(升)随时间t(分)变化的函数关系.

(1)求线段BC所表示的Q与t之间的函数关系式,并写出自变量t的取值范围;
(2)现已知容器内有水200升,先打开两个进水管和一个出水管一段时间,然后再关上一个进水管,直至把容器放满水,若总共用时不超过8分钟。请问,在这个过程中同时打开两个进水管和一个出水管的时间至少是多少分钟?
王老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班和(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况:
(1)利用图中提供的信息,补全下表:
|
班级 |
平均数(分) |
中位数(分) |
众数(分) |
|
(1)班 |
|
24 |
24 |
|
(2)班 |
24 |
|
|
(2)若把24分以上(含24分)记为”优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;
(3)观察图中数据分布情况,根据方差比较哪个班的学生纠错的得分情况比较整齐.
已知:如图,△ABC是等边三角形,D、E分别是BA、CA的延长线上的点,且AD=AE,连接ED并延长到F,使得EF=EC,连接AF、CF、BE.

(1)求证:四边形BCFD是平行四边形;
(2)试指出图中与AF相等的线段,并说明理由。
(1)计算:
+(π-3)0-
-cos60°+tan30°
(2)已知x是一元二次方程![]()
的实数根,求代数式:
的值.
已知:如图,AB=BC,∠ABC=90°,以AB为直径的⊙O交OC与点D,AD的延长线交BC于点E,过D作⊙O的切线交BC于点F。下列结论:①CD2=CE·CB;②4EF2=ED·EA;③∠OCB=∠EAB;④DF=
CD.其中正确的有 (填序号)
课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在第 天.
