先化简,再求值:(2a+1)2﹣2(2a+1)+3,其中a=
.
玉树大地震发生后,小超把本年级同学的捐款情况统计并制成图表,如下
|
金额(元) |
人数 |
频率 |
|
10≤x<20 |
40 |
0.1 |
|
20≤x<30 |
80 |
0.2 |
|
30≤x<40 |
M |
0.4 |
|
40≤x<50 |
100 |
n |
|
50≤x<60 |
20 |
0.05 |
请根据图表提供的信息解答下列问题:
(1)表中m和n所表示的数分别是多少?
(2)补全频数分布直方图。
(3)捐款金额的中位数落在哪个段?
如图,抛物线y=-x2+bx+c与x轴、y轴分别交于A(-1,0)、B(0,3)两点,顶点为D.

(1)求该抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积(3分)
(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
如图,抛物线
与x轴交于A(
,0)、B(3,0)两点,与y轴交于点C.

(1)求抛物线的函数关系式;
(2)点P是抛物线上第三象限内的一动点,当点P运动到什么位置时,四边形ABCP的面积最大?求出此时点P的坐标和四边形ABCP的面积;
(3)点M在抛物线对称轴上,点N是平面内一点,是否存在这样的点M、N,使得以点M、N、B、C为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
计算:![]()
