小强和爸爸上山游玩,两人距地面的高度y(米)与小强登山时间x(分)之间的函数图象分别如图中折线OAC和线段DE所示,根据函数图象进行以下探究:

信息读取:(1)爸爸登山的速度是每分钟 米;(2)请解释图中点B的实际意义;
图象理【解析】
(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围;
(4)计算并填空:m= ;
问题解决:
(5)若小强提速后,他登山的速度是爸爸速度的3倍,问小强登山多长时间时开始提速?此时小强距地面的高度是多少米?
如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=
,过点D作DE垂直OA的延长线且交于点E.(1)求证:△OAB∽△EDA;

(2)当
为何值时,△OAB与△EDA全等?请说明理由;并求出此时B、D两点的距离.
甲、乙、丙、丁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率。
已知,如图,在R t△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.

(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和
)
如图,AB是⊙O的直径,过⊙O上的点C作切线交AB的延长线于点D,∠D=30º.

(1)求∠A的度数;
(2)过点C作CF⊥AB于点E,交⊙O于点F,CF=4
,求
的长度(结果保留π).
将A,B,C,D四人随机分成甲、乙两组参加羽毛球比赛,每组两人.
(1)A在甲组的概率是多少?
(2)A,B在同一组的概率是多少?
