自古以来,钓鱼岛及其附属岛屿都是我国固有领土。如图,为了开发利用海洋资源,我勘测飞机测量钓鱼岛附属岛屿之一的北小岛(又称为鸟岛)两侧端点A、B的距离,飞机在距海平面垂直高度为100米的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了800米,在点D测得端点B的俯角为45°,求北小岛两侧端点A、B的距离.
(结果精确到0.1米,参考数据
)
如图,在菱形ABCD中,对角线AC、BD相交于点O.

(1)平移△AOB,使得点A移动到点D,画出平移后的三角形(不写画法,保留画图痕迹);
(2)在第(1)题画好的图形中,除了菱形ABCD外,还有哪种特殊的平行四边形?请给予证明.
解方程:(1)
;(2)![]()
如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.

(1)求该抛物线的解析式;
(2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大;
(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P的坐标;若不存在,请说明理由.
如图,平面直角坐标系中,直线y=-
x+8分别交x轴、y轴于点B、点A,点D从点A出发沿射线AB方向以每秒1个单位长的速度匀速运动,同时点E从点B出发沿射线BC方向以每秒
个单位长的速度匀速运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥AO于点F,连接DE、EF.

(1)当t为何值时,△BDE与△BAO相似;
(2)写出以点D、F、E、O为顶点的四边形面积s与运动时间t之间的函数关系;
(3)是否存在这样一个时刻,此时以点D、F、E、B为顶点的四边形是菱形,如果存在,求出相应的t的值;如果不存在,请说明理由.
如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O.

(1)△ABF≌△CAE;
(2)HD平分∠AHC吗?为什么?
