满分5 > 初中数学试题 >

如图1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于点O. (1)求边...

如图1,在菱形ABCD中,AC=2,BD=2说明: 满分5 manfen5.com,AC,BD相交于点O.

(1)求边AB的长;

(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.

①判断△AEF是哪一种特殊三角形,并说明理由;

②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.说明: 满分5 manfen5.com

 

(1)2      (2)①等边三角形    ② 【解析】 试题分析:(1)∵四边形ABCD是菱形, ∴△AOB为直角三角形,且OA=AC=1,OB=BD=. 在Rt△AOB中,由勾股定理得: AB===2. (2)①△AEF是等边三角形.理由如下: ∵由(1)知,菱形边长为2,AC=2, ∴△ABC与△ACD均为等边三角形, ∴∠BAC=∠BAE+∠CAE=60°,又∠EAF=∠CAF+∠CAE=60°, ∴∠BAE=∠CAF. 在△ABE与△ACF中, ∵, ∴△ABE≌△ACF(ASA), ∴AE=AF, ∴△AEF是等腰三角形, 又∵∠EAF=60°, ∴△AEF是等边三角形. ②BC=2,E为四等分点,且BE>CE, ∴CE=,BE=. 由①知△ABE≌△ACF, ∴CF=BE=. ∵∠EAC+∠AEG+∠EGA=∠GFC+∠FCG+∠CGF=180°(三角形内角和定理), ∠AEG=∠FCG=60°(等边三角形内角), ∠EGA=∠CGF(对顶角) ∴∠EAC=∠GFC. 在△CAE与△CFG中, ∵, ∴△CAE∽△CFG(AA), ∴,即, 解得:CG=. 考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理;菱形的性质.
复制答案
考点分析:
相关试题推荐

已知:如图,四边形ABCD是正方形,BD是对角线,BE平分∠DBC交DC于E点,交DF于M,F是BC延长线上一点,且CE=CF.

(1)求证:BM⊥DF;

(2)若正方形ABCD的边长为2,求ME?MB.说明: 满分5 manfen5.com

 

查看答案

如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G.

(1)求证:AF⊥BE;

(2)试探究线段AO、BO、GO的长度之间的数量关系;

(3)若GO:CF=4:5,试确定E点的位置.说明: 满分5 manfen5.com

 

查看答案

如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=   说明: 满分5 manfen5.com

 

查看答案

如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为           说明: 满分5 manfen5.com

 

查看答案

如图,Rt△ABC中,∠ACD=90°,直线EF∥BD,交AB于点E,交AC于点G,交AD于点F.若S△AEG=说明: 满分5 manfen5.comS四边形EBCG,则说明: 满分5 manfen5.com=         说明: 满分5 manfen5.com

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.