下列各式:①4x2﹣y2;②2x4+8x3y+8x2y2;③a2+2ab﹣b2;④x2+xy﹣6y2;⑤x2+2x+3其中不能分解因式的有( )
A.1个 B.2个 C.3个 D.4个
a4b﹣6a3b+9a2b分解因式得正确结果为( )
A.a2b(a2﹣6a+9) B.a2b(a﹣3)(a+3)
C.b(a2﹣3)2 D.a2b(a﹣3)2
把下列各式分解因式
(1)(x2+y2)2﹣4x2y2;(2)3x3﹣12x2y+12xy2
请看下面的问题:把x4+4分解因式
分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢
19世纪的法国数学家苏菲?热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)
人们为了纪念苏菲?热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲?热门的做法,将下列各式因式分解.
(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.
阅读理解
我们知道:多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解.当一个多项式(如a2+6a+8)不能写成两数和(或差)的平方的形式时,我们通常采用下面的方法:
a2+6a+8=(a+3)2﹣1=(a+2)(a+4).
请仿照上面的方法,将下列各式因式分【解析】
(1)x2﹣6x﹣27;(2)a2+3a﹣28;(3)x2﹣(2n+1)x+n2+n.
把下列各式分解因式:
(1)a2﹣14ab+49b2
(2)a(x+y)﹣(a﹣b)(x+y);
(3)121x2﹣144y2;
(4)3x4﹣12x2.
