如图,AB是⊙O的直径,AB=2,半径OC⊥AB于O,以点C为圆心,AC长为半径画弧.

(1)求阴影部分的面积;
(2)把图中以点C为圆心的扇形ACB围成一个圆锥,求这个圆锥的底面半径.
如图,⊿ACO的顶点A,C分别是双曲线
与直线
在第二象限、第四象限的交点,AB⊥
轴于B且S△ABO=![]()

(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A,C的坐标;
(3)根据图象写出使
的自变量x的取值范围.
小兵和小宁玩纸牌游戏。下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小兵先从中抽出一张,小宁从剩余的3张牌中也抽出一张。
小宁说:“若抽出的两张牌上的数字都是偶数,你获胜;否则,我获胜。”

(1)请用树状图或列表法表示出抽牌可能出现的所有结果;
(2)若按小宁说的规则进行游戏,这个游戏公平吗?请说明理由。
如图, 现有边长为1,a (其中a>1)的一张矩形纸片, 现要将它剪裁出三个小矩形 (大小可以不同, 但不能有剩余), 使每个矩形都与原矩形相似,请在图中画出两种不同裁剪方案的裁剪线的示意图,并直接写出相应的a的值(不必写过程)。

如图,在△ABC中,AB=AC,M、N分别是AB、AC的中点,D、E为BC上的点,连结DN、EM. 若AB=13cm,BC=10cm,DE=5cm,则图中阴影部分的面积为 cm2.
如图,在
网格的两个格点上摆放黑、白两个棋子,使两棋子不在同一条格线上.其中恰好如图示位置摆放的概率是 .
