(8分)一位同学拿了两块相同的
三角尺
和
做了一个探究活动:将
的直角顶点
放在
的斜边
的中点处,设
.

(1)如图(1),两三角尺的重叠部分为
,则重叠部分的面积为 ,周长为 .
(2)将图(1)中的
绕顶点
逆时针旋转
,得到图(2),此时重叠部分的面积为 ,周长为 .
(3)如果将
绕
旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为 .
(4)在图(3)情况下,若
,求出重叠部分图形的周长.
(7分)如图,已知抛物线
经过A(2,0)、B(0,-6)两点,其对称轴与
轴交于点C.

(1)求该抛物线和直线BC的解析式;
(2)设抛物线与直线BC相交于点D,连结AB、AD,求△ABD的面积.
(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于D、E两点,过点D作DF⊥AC,垂足为点F.

(1)求证:DF是⊙O的切线;
(2)若弧AE=弧DE,DF=2,求弧AD的长.
(6分)(1)如图:靠着22 m长的房屋后墙,围一块150 m2的矩形鸡场,现在有篱笆共40 m。求矩形的长、宽各多少米?

(2)若把“围一块150 m2的矩形鸡场”改为“围一块S m2的矩形鸡场”,其它条件不变,能否使S最大。若能,请你求出此时矩形的长、宽及最大面积;若不能,请你说明理由。
(6分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上。

(1)若
,求
的度数;
![]()
(2)若
,
,求
的长.
(6分)
一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为
,求n的值.
