某单位为了丰富职工的业余文化生活,决定在广场放映露天电影,小明和小强吃过晚饭手拉手来到广场,准备看电影,可小明非要在背面看,于是小强在正面,小明在背面,如图,如果他俩眼睛在同一水平面上,而且看同一点时视线与水平线夹角相等.利用三角形全等,能判断他俩距屏幕一样远吗?

思考:结果为:___________.
证明:如图:

∠OAC=∠OBC
∵OC⊥AB
∴∠ACO=______=90°
在△OAC和△OBC中:
∠OAC=∠OBC
∠ACO=______
OC=______
∴△OAC≌△OBC,理由( ).
因此判断他们距屏幕的距离_________.
如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?

要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,可以证明△EDC≌△ABC,得到ED=AB,因此测得ED的长就是AB的长(如图).判定△EDC≌△ABC的理由是

A.边角边公理 B.角边角公理
C.边边边公理 D.斜边直角边公理
如图所示,P为∠BAC平分线上一点,PM⊥AC于M点,PN⊥AB于N点,MN交AP于D点,要证明MD=ND,只要证_________≌_________,或_________≌_________.而要证明其中一对三角形全等,又必须先证明_________≌_________.由已知条件,只要用“_________”的判定定理就可以证其全等,由此看来,图中共有_________对全等三角形,进一步深思:直线AP与直线MN还可以证明互相_________.

有的屋顶做成三角形是因为三角形的稳定性.( )
有两边及其夹角对应相等的两个三角形全等.( )
