矩形具有而菱形不具有的性质是( )
|
|
A. |
对角线相等 |
B. |
对角线互相垂直 |
|
|
C. |
对角线互相平分 |
D. |
对角线平分一组对角 |
如图①所示,已知
、
为直线
上两点,点
为直线
上方一动点,连接
、
,分别以
、
为边向
外作正方形
和正方形
,过点
作
于点
,过点
作
于点
.

(1)如图②,当点
恰好在直线
上时(此时
与
重合),试说明
;
(2)在图①中,当
、
两点都在直线
的上方时,试探求三条线段
、
、
之间的数量关系,并说明理由;
(3)如图③,当点
在直线
的下方时,请直接写出三条线段
、
、
之间的数量关系.(不需要证明)
(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.

(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.

(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4. 直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;

②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).

如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.

(1)求证:四边形ABCD是平行四边形;
(2)若AB=3cm,BC=5cm,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△ABP为等腰三角形?
已知:如图,点B、F、C、E在同一直线上,BF=CE,AB⊥BE,DE⊥BE,垂足分别为B、E且AB=DE,连接AC、DF.

求证:∠A=∠D.
求不等式组
的整数解.
