如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H。
(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设
的面积为
,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);

动手做一做(4分)有一块形状如图的木板,经过适当的剪切后,拼成一块面积最大的正方形板材,请在图中画出剪切线,并把拼成的正方形在图中画出(保留剪切的痕迹,不写画法)

如图,ABCD是正方形,G是BC上的一点,
于E,
于F。猜想DE、EF、FB之间的数量关系,并对你的猜想加以证明。

下列函数中,自变量x的取值范围为
的是( )
A.
B.
C.
D.
![]()
如图,
在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程
的两个根,且OA>OB.

(1)求sin∠ABC的值.
(2)若E为x轴上的点,且
,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.
某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台. 经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:
|
型 号 |
A型 |
B型 |
|
成本(元/台) |
2200 |
2600 |
|
售价(元/台) |
2800 |
3000 |
(1)冰箱厂有哪几种生产方案?
(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?
(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学。其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.
