下列关于
的一元二次方程中,有两个不相等的实数根的方程是 (    
)  
A.
                   
  B.
  
C.
                  
D.![]()
有下列四个命题中,其中正确的有( )
①圆的对称轴是直径; ②经过三个点一定可以作圆;
③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.
A.4个 B.3个 C.2个 D.1个
下列各式中,最简二次根式为( )
A.
          
B.
         
C.
        
D.
  
已知,A(3,a)是双曲线y=
 上的点,O是原点,延长线段AO交双曲线于另一点B,又过B点作BK⊥x轴于K.
(1)试求a的值与点B坐标;
(2)在直角坐标系中,先使线段AB沿x轴的正方向平移6个单位,得线段A1B1,再依次在与y轴平行的方向上进行第二次平移,得线段A2B2,且可知两次平移中线段AB先后滑过的面积相等(即▱AA1B1B与▱A1A2B2B1的面积相等).求出满足条件的点A2的坐标,并说明△AA1A2与△OBK是否相似的理由;
(3)设线段AB中点为M,又如果使线段AB与双曲线一起移动,且AB在平移时,M点始终在抛物线y= 
(x-6)2-6上,试判断线段AB在平移的过程中,动点A所在的函数图象的解析式;(无需过程,直接写出结果.)
(4)试探究:在(3)基础上,如果线段AB按如图2所示方向滑过的面积为24个平方单位,且M点始终在直线x=6的左侧,试求此时线段AB所在直线与x轴交点的坐标,以及M点的横坐标.

如图,在平面直角坐标系中,⊙D与坐标轴分别相交于A(-
,0),B(
,0),C(0,3)三点.
(1)求⊙D的半径;
(2)E为优弧AB一动点(不与A,B,C三点重合),EN⊥x轴于点N,M为半径DE的中点,连接MN,求证:∠DMN=3∠MNE;
(3)在(2)的条件下,当∠DMN=45°时,求E点的坐标.

如图①的矩形纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.
(1)如图②,数学课本长为26cm,宽为18.5cm,厚为1cm.小明用一张面积为1260cm2的矩形纸好了这本,展开后如图①所示,求折叠进去的宽度;
(2)现有一本长为19cm,宽为16cm,厚为6cm的字典.你能用一张41cm×26cm的矩形纸,按图①所示的方法好这本字典,并使折叠进去的宽度不小于3cm吗?请说明理由.

