下列运算正确的是( )
A.
  B.
 
C.
  D.![]()
下列标志中,既是轴对称图形又是中心对称图形的为( )
![]()  | 
 
等于(     )
A.-1 B.1 C.-3 D.3
如图,已知抛物线y=-x2+2x+3交x轴于A、B两点(点A在点B的左侧),与y轴交于点C。
(1)求点A、B、C的坐标。
(2)若点M为抛物线的顶点,连接BC、CM、BM,求△BCM的面积。
(3)连接AC,在x轴上是否存在点P使△ACP为等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由。

阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.
数学老师给小明同学出了一道题目:在图正方形网格(每个小正方形边长为1)中画出格点△ABC,使
,
;
小明同学的做法是:由勾股定理,得
,
,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图中的正方形网格(每个小正方形边长为1)中画出格点△
(
点位置如图所示),使
=
=5,
.(直接画出图形,不写过程);
(2)观察△ABC与△
的形状,猜想∠BAC与∠
有怎样的数量关系,并证明你的猜想. 
      

在云南大理坐落着美丽的大理三塔.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量三塔中一塔的高度,携带的测量工具有:测角仪.皮尺.小镜子.
(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点
,用测角仪测出看塔顶
的仰角
,在
点和塔之间选择一点
,测出看塔顶
的仰角
,然后用皮尺量出
.
两点的距离为
m,自身的高度为
m.请你利用上述数据帮助小华计算出塔的高度(
,结果保留整数).

(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影
的长为
m(如图2),你能否利用这一数据设计一个测量方案?如果能,
请回答下列问题:
①在你设计的测量方案中,选用的测量工具是: ;
②要计算出塔的高,你还需要测量哪些数据? .
