如图,已知直线 的解析式是
的解析式是 ,并且与
 ,并且与 轴、
轴、 轴分别交于A、B两点。一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着
轴分别交于A、B两点。一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着 轴向下运动,当⊙C与直线
轴向下运动,当⊙C与直线 相切时,则该圆运动的时间为(         
)
相切时,则该圆运动的时间为(         
)

A.3秒或6秒 B.6秒 C.3秒 D.6秒或16秒
下面是某同学在一次测验中解答的填空题:
(1)若 ,则
 ,则
(2)方程 的解为
的解为 .
.
(3)若直角三角形有两边长分别为3和4,则第三边的长为5.
其中答案完全正确的题目个数为( ).
A.0个 B.1个 C.2个 D.3个
小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
| 输入 | … | 1 | 2 | 3 | 4 | 5 | … | 
| 输出 | … | 
 | 
 | 
 | 
 | 
 | … | 
那么,当输入数据是8时,输出的数据是( )
    A、 B、
            
 B、 C、
           
 C、 D、
          
 D、
下列计算正确的是( )
   
A、 B、
                     
B、
C、 D、
                              
D、
如图1,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于点A、点B,与y轴交于点C,且A、B两点的坐标分别是(4,0)、(0,-2),tan∠BCO= (1)求抛物线解析式;(2)点M为抛物线上一点,若以MB为直径的圆与直线BC相切于点B,求点M的坐标;(3) 如图2,若点P是抛物线上的动点,点Q是直线y=-x的动点,是否存在以点P、Q、C、O为顶点且以OC为一边的四边形是直角梯形;如果存在,请求出点P的坐标,如果不存在,请说明理由.
(1)求抛物线解析式;(2)点M为抛物线上一点,若以MB为直径的圆与直线BC相切于点B,求点M的坐标;(3) 如图2,若点P是抛物线上的动点,点Q是直线y=-x的动点,是否存在以点P、Q、C、O为顶点且以OC为一边的四边形是直角梯形;如果存在,请求出点P的坐标,如果不存在,请说明理由.

【解析】(1)利用A、B两点的坐标和tan∠BCO= 求抛物线解析式
求抛物线解析式
(2)设点m(x,y),则由以MB为直径的圆与直线BC相切于点B,说明了点B为直径的一个端点,另外,BC直线方程为y=2x+4,利用BM的中点就是圆心坐标,BM垂直于CB,因此联立方程组可得M的坐标
(3)假设存在以点P、Q、C、O为顶点且以OC为一边的四边形是直角梯形
则有几种情况的一种直角为C,直角为P,直角为O,直角为Q的情况 ,那么分情况讨论求解,利用一组对边平行,一个角为直角,进行求解
近年来,大学生就业日益困难.为了扶持大学生自主创业,某市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其他费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.

(1)分别求出40<x≤60;60<x<80时,月销售量y(万件)与销售
单价x(元)之间的函数关系;
(2)当销售单价定为50元时,为保证公司月利润达到5万元
可安排员工多少人?
(3)若该公司有80名员工,则该公司最早可在几月后还清贷款?
【解析】(1)利用图象上点的坐标利用待定系数法代入y=kx+b,求出一次函数解析式即可;
(1) 根据利润=销售额—生产成本—员工工资—其它费用列方程求出解
(3)分两种情况进行讨论:当 时,当
时,当 时得出结论
时得出结论
