如图,矩形ABCD的边AB=6 cm,BC=8
cm,在BC上取一点P,在CD边上取一点Q,使∠APQ成直角,设BP=x cm,CQ=y cm,试以x为自变量,写出y与x的函数关系式.并求
为何值时,
有最大值或最小值?

某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量
(件)与每件的销售价
(元)满足关系:
=140-2
.
1.(1)写出商场卖这种商品每天的销售利润
与每件的销售价
间的函数关系式;
2.(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?
如图,△ABC是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30c
从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,
顶点G、H分别在AC,AB上,AD与HG的交点为M.

1.(1)求证:
=![]()
2.(2)求这个矩形EFGH的周长.
(8分)已知抛物线
与
轴有两个不同的交点.
1.(1)求
的取值范围;
2.(2)抛物线
与x轴两交点的距离为2,求
的值.
(6分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1
和△A2B2C2:
1.(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;
2.(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2

抛物线
上部分点的横坐标
,纵坐标
的对应值如下表:
|
x |
… |
-2 |
-1 |
0 |
1 |
2 |
… |
|
y |
… |
0 |
4 |
6 |
6 |
4 |
… |
从上表可知,下列说法中正确的是 .(填写序号)
①抛物线与
轴的一个交点为(3,0); ②函数
的最大值为6;
③抛物线的对称轴是
;
④在对称轴左侧,
随
增大而增大.
