一元二次方程
根的情况是 ( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.没有实数根
如果
,则 (
)
A.a<
B. a≤
C. a>
D. a≥![]()
下列运算正确的是 ( )
A.=±5 B.4-=1 C.÷=9 D.·=6
(-2)2的算术平方根是 ( )
A.2 B.
±2 C.-2 D.![]()
已知:如图①,在
中,
,
,
,点
由
出发沿
方向向点
匀速运动,速度为1cm/s;点
由
出发沿
方向向点
匀速运动,速度为2cm/s;连接
.若设运动的时间为
(
),解答下列问题

1.当
为何值时,
?
2.设
的面积为
(
),求
与
之间的函数关系式;
3.是否存在某一时刻
,使线段
恰好把
的周长和面积同时平分?若存在,求出此时
的值;若不存在,说明理由;
4.如图②,连接
,并把
沿
翻折,得到四边形
,那么是否存在某一时刻
,使四边形
为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC绕点P逆时针旋转180°拼接到△PFD的位置,构成新的图形(如图2).
思考发现:
判断图2中四边形ABEF的形状: ;四边形ABEF的面积是 。(用含字母的代数式表示)
实践探究:
类比图2的剪拼方法,请你就图3(已知:AB∥DC)画出剪拼成一个平行四边形的示意图.

联想拓展:
小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形
1.如图4,在梯形ABCD中,AD∥BC,E是CD的中点, EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积。

2.如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.

