阅读下面的材料:
小明在数学课外小组活动中遇到这样一个“新定义”问题:
小明是这样解决问题的:由新定义可知a=1,b=-2,又b<0,所以1※(-2)=
.
请你参考小明的解题思路,回答下列问题:
(1)计算:2※3= ;
(2)若5※m=
,则m= .
(3)函数y=2※x(x≠0)的图象大致是( )

如图,AB是⊙O的直径,点C在⊙O上,CEAB于E,CD平分ECB,交过点B的射线于D,交AB于F,且BC=BD.

(1)求证:BD是⊙O的切线;
(2)若AE=9,CE=12,求BF的长.
如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,求这个车轮的外圆半径长.

抛物线
与x轴分别交于点A (-1,0)和点B,与y轴的交点C坐标为(0,-3).
(1)求抛物线的表达式;
(2)点D为抛物线对称轴上的一个动点,若DA+DC的值最小,求点D的坐标.
如图,直线y=3x与双曲线
的两个交点分别为A (1 ,m)和B.

(1)直接写出点B坐标,并求出双曲线
的表达式;
(2)若点P为双曲线
上的点(点P不与A、B重合),且满足PO=OB,直接写出点P坐标.
小红想要测量校园内一座教学楼CD的高度.她先在A处测得楼顶C的仰角
30°,再向楼的方向直行10米到达B处,又测得楼顶C的仰角
60°,若小红的目高(眼睛到地面的高度)AE为1.60米,请你帮助她计算出这座教学楼CD的高度(结果精确到0.1米)参考数据:
,
,![]()

