在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C, 那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.
如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.

(1)旋转中心是点 ,旋转角度是 度;
(2)若连结EF,则△AEF是 三角形;并证明
如图所示,AB是
直径,
弦
于点
,且交
于点
,若
.

(1)判断直线
和
的位置关系,并给出证明;
(2)当
时,求
的长.
恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放
天后,将这批香菇一次性出售,设这批香菇的销售总金额为
元,试写出
与
之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
已知一次函数y1=ax+b的图象与反比例函数y2=
的图象相交于A、B两点,坐标分别为(—2,4)、(4,—2)。

(1)求两个函数的解析式;
(2)结合图象写出y1<y2时,x的取值范围;
(3)求△AOB的面积;
(4)是否存在一点P,使以点A﹑B﹑O﹑P为顶点的四边形为菱形?若存在,求出顶点P的坐标;若不存在,请说明理由。
如图,在直角坐标系中,四边形ABCD是正方形,A(1,-1)、B(-1,-1)、C(-1,1)、D(1, 1).曲线AA
A
A
…叫做“正方形的渐开线”,其中
、
、
…的圆心依次是点B、C、D、A循环,则点A
的坐标是 .

