(12分)某商场将进价为30元的书包以40元售出, 平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个。
(1)请写出每月售出书包的利润y元与每个书包涨价x元间的函数关系式;
(2)设每月的利润为10000的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元。
(3)请分析售价在什么范围内商家所获利润不低于6000元。
(10分)如图,利用一面墙(长度不限),用24m长的篱笆,围成一个面积为70m2的长方形场地.求长方形的长和宽

(10分)如图,⊙O的半径OB=5 cm,AB是⊙O的弦,点C是AB延长线上一点,且∠OCA=30°,OC=8 cm,求AB的长.

(8分)如图,已知△ABC的三个顶点的坐标分别 为A(-6,0)、B(-2,3)、C(-1,0).(本题满分8分)

(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形;
(2)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.
(每小题6分共12分)解方程
(1)2(x+2)2-8=0 ;
(2)2x2-7x+3=0.
如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为_______ 。(结果保留
)

