(本题满分14分)
问题1如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.
研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是什么?
研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是什么?
研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.
研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是什么?

(本题满分12分)如图,已知∠AOB内部有三条射线,OE平分∠BOC,OF平分∠AOC.

(1)若∠AOB=90°,∠AOC=30°,求∠EOF的度数;
(2)若∠AOB=
,求∠EOF的度数(写出求解过程);
(3)若将条件中“OE平分∠BOC,OF平分∠AOC.平分”改为“∠EOB=
∠COB,∠COF=
∠COA”,且∠AOB=
,求∠EOF的度数(写出求解过程).
(本题满分10分)小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一批服装,为了缓解资金的压力,小张决定打折销售.若每件服装按标价的五折出售将亏20元,若按标价的八折出售将赚40元.
(1)每件服装的标价是多少元?
(2)每件服装的成本价是多少元?
(3)为保证不亏本,你告诉小张最多能打几折?
(本题满分10分)
(1)画出下图中几何体的三视图.

_______________ ______________ ______________
主视图 左视图 俯视图
(2)小明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小明看来看去觉得所拼图形似乎存在问题.

①请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;
②若图中的正方形边长5cm,长方形的长为8cm,宽为5cm,请直接写出修正后所折叠而成的长方体的表面积为 cm2.
(本题满分10分)如图,由相同边长的小正方形组成的网格图形,A、B、C都在格点上.

(1)在网格内过点C画与线段AB平行且相等的线段CD;
(2)过点A画直线BC的垂线,并注明垂足为点G;过点A画直线AB的垂线,交BC于点H.
(3)线段AH的长度是点 到直线 的距离,点A到直线BC的距离是 .
(4)线段AG、AH的大小关系为:AG AH(填“>”或“<”或“=”),理由是 .
(本题满分10分) 如图,在△ABC中,点E、G分别在BC、AC上,CD⊥AB,EF⊥AB,垂足分别为D、F.已知∠1+∠2=180°,∠3=105°,求∠ACB的度数.请将求∠ACB度数的过程填写完整.

【解析】
∵EF⊥AB,CD⊥AB,(已知)
∴∠BFE=90°,∠BDC=90°,
理由是: .
∴∠BFE=∠BDC,
∴EF∥CD,理由是: .
∴ ∠2+∠ =180°,理由是: .
又∵ ∠1 +∠2=180°(已知),
∴ ∠1 = .
∴ BC∥ ,理由是: .
∴∠3 = ,理由是: .
又∵∠3 = 105°(已知),
∴∠ACB= .
