如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(-4,0),B(-1,0)两点.

(1)求抛物线的解析式;
(2)在第三象限的抛物线上有一动点D.如图,若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.
在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.

(1)若花园的面积为192m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

(1)求证:CD为⊙O的切线;
(2)若DC=4,AC=5,求⊙O的直径的AE.
观察表格:
根据表格解答下列问题:(1)a=_______,b=_______,c=_______.
(2)画出函数y=ax2+bx+c的图象,并根据图象,直接写出当x取什么实数时,不等式ax2+bx+c<-3成立;
在一个暗箱中装有红、黄、自三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是
.
(1)求暗箱中红球的个数.
(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树状图或列表法求解)
某校为了解“理化生实验操作”考试的备考情况,随机抽取了一部分九年级学生进行测试,测试结果分为“优秀”、“良好”、“合格”、“不合格”四个等级,分别记为A、B、C、D.根据测试结果绘制了如下尚不完整的统计图.

(1)本次测试共随机抽取了 名学生.请根据数据信息补全条形统计图;
(2)若该校九年级的600名学生全部参加本次测试,请估计测试成绩等级在合格以上(包括合格)的学生约有多少人?
