钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是( )
A.
B.
C.
D. ![]()
下列说法正确的是( )
A.平分弦的直径垂直于弦
B.半圆(或直径)所对的圆周角是直角
C.相等的圆心角所对的弧相等
D.三点确定一个圆
(12分)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.

(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.
(12分)行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:
刹车时车速/km•h﹣1 | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
刹车距离/m | 0 | 0.3 | 1.0 | 2.1 | 3.6 | 5.5 | 7.8 |
(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;
(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式;
(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?
(10分)阅读材料:
如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=﹣
,x1x2=
.
这是一元二次方程根与系数的关系,我们利用它可以用来解题:
设x1,x2是方程x2+6x﹣3=0的两根,求x
+x
的值.
解法可以这样:∵x1+x2=﹣6,x1x2=﹣3,则x
+x
=(x1+x2)2﹣2x1x2=(﹣6)2﹣2×(﹣3)=42.
请你根据以上解法解答下题:
已知x1,x2是方程x2﹣4x+2=0的两根,求:
(1)
+
的值;
(2)(x1﹣x2)2的值.
(10分)已知关于x的方程
.
(1)如果此方程有两个不相等的实数根,求m的取值范围;
(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.
