在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:
若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形
,
,
都是点A,B,C的外延矩形,矩形
 是点A,B,C的最佳外延矩形.

(1)如图1,已知A(-2,0),B(4,3),C(0,
).
①若
,则点A,B,C的最佳外延矩形的面积为                ;
②若点A,B,C的最佳外延矩形的面积为24,则
的值为           ;
(2)如图2,已知点M(6,0),N(0,8).P(
,
)是抛物线
上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标
的取值范围;
(3)如图3,已知点D(1,1).E(
,
)是函数
的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.

在正方形ABCD中,点E,F,G分别是边AD,AB,BC的中点,点H是直线BC上一点.将线段FH绕点F逆时针旋转90º,得到线段FK,连接EK.


(1)如图1,求证:EF=FG,且EF⊥FG;
(2)如图2,若点H在线段BC的延长线上,猜想线段BH,EF,EK之间满足的数量关系,并证明你的结论.
(3)若点H在线段BC的反向延长线上,请在图3中补全图形并直接写出线段BH,EF,EK之间满足的数量关系.
已知关于
的方程
.
(1)求证:当
时,方程总有两个不相等的实数根;
(2)若二次函数
的图象与x轴交于A,B两点(A在B的左侧),与
轴交于点C,且tan∠OAC=4,求该二次函数的解析式;
(3)已知点P(m,0)是x轴上的一个动点,过点P作垂直于x轴的直线交(2)中的二次函数图象于点M,交一次函数
的图象于点N.若只有当
时,点M位于点N的下方,求一次函数
的解析式.

阅读下面材料:
小辉遇到这样一个问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.

小辉发现,将△ABD绕点A按逆时针方向旋转90º,得到△ACF,连接EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△FAE≌△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.
请回答:在图2中,∠FCE的度数是 ,DE的长为 .
参考小辉思考问题的方法,解决问题:
如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF=
∠BAD.猜想线段BE,EF,FD之间的数量关系并说明理由.
如图,AB为⊙O的直径,直线
与⊙O相切于点C,过点A作AD⊥
于点D,交⊙O于点E.

(1)求证:∠CAD=∠BAC;[(2)若sin∠BAC=
,BC=6,求DE的长.
根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下

根据以上信息解答下列问题:
(1)请补全条形统计图并在图中标明相应数据;
(2)若北京市约有2100万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,则抽取的两人恰好是甲和乙的概率为 .
