△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α (0°<α ≤90°) ,点F,G,P分别是DE,BC,CD的中点,连接PF,PG.

(1)如图①,α=90°,点D在AB上,则∠FPG= °;
(2)如图②,α=60°,点D不在AB上,判断∠FPG的度数,并证明你的结论;
(3)连接FG,若AB=5, AD=2,固定△ABC,将△ADE绕点A旋转,当PF的长最大时,FG的长为 (用含α的式子表示).
已知二次函数
在
和
时的函数值相等.
(1)求该二次函数的表达式;
(2)画出该函数的图象,并结合图象直接写出当
时,自变量
的取值范围;
(3)已知关于
的一元二次方程
,当
时,判断此方程根的情况.

如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.

(1)求证:∠ABC=2∠CAF;
(2)若AC=
,CE:EB=1:4,求CE,AF的长.
随着“节能减排、绿色出行”的健康生活意识的普及,新能源汽车越来越多地走进百姓的生活.某汽车租赁公司拥有40辆电动汽车,据统计,当每辆车的日租金为120元时,可全部租出;当每辆车的日租金每增加5元时,未租出的车将增加1辆;该公司平均每日的各项支出共2100元.
(1)若某日共有x辆车未租出,则当日每辆车的日租金为 元;
(2)当每辆车的日租金为多少时,该汽车租赁公司日收益最大?最大日收益是多少?
如图,直线
与反比例函数
的图象相交于点A(a,3),且与x轴相交于点B.

(1)求该反比例函数的表达式;
(2)若P为y轴上的点,且△AOP的面积是△AOB的面积的
,请直接写出点P的坐标.
已知关于
的一元二次方程
.
(1)求证:此方程总有两个实数根;
(2)若
为整数,当此方程的两个实数根都是整数时,求
的值.
