如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.

(1)求证:∠A=2∠DCB;
(2)求图中阴影部分的面积(结果保留π和根号).
如图,点B在⊙O的直径AC的延长线上,点D在⊙O上,AD=DB,∠B=30°,若⊙O的半径为4.

(1)求证:BD是⊙O的切线;
(2)求CB的长.
已知关于
的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
如图,抛物线y=x2+bx+c与x轴交于A(-1,0)和B(3,0)两点,交y轴于E.

(1)求此抛物线的表达式.
(2)若直线y=x+1与抛物线交于A,D两点,与y轴交于点F,连接DE,求△DEF的面积.
若实数a,b满足
a-ab+b2+2=0,则a的取值范围是
已知a,b是方程x2-x-3=0的两个根,则代数式a2+b+3的值为 .
