如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H, AE=CF,BE=EG。

(1)求证:EF//AC;
(2)求∠BEF大小;
(3)求证:![]()
如图,点A是反比例函数
上一点,作AB⊥x轴于点B,且△AOB的面积为2,点A坐标为(-1,m)。

(1)求k和m的值。
(2)若直线
经过点A,交另一支双曲线于点C,求△AOC的面积。
(3)指出x取何值时,一次函数的值大于反比例函数的值,直接写出结果。
(4)在y轴上是否存在点P,使得△PAC的面积为6,如果存在,请求出点P的坐标;若不存在,请说明理由.
如图,在△AFC中,AF=AC,B是CF的中点,AH平分∠CAF,作CD⊥AH于D。

(1)证明四边形ABCD是矩形。
(2)若BD交AC于O,证明:OB//AF且OB=
AF。
(3)若使四边形ABCD是正方形,需添加一个条件,请直接写出该条件。
如图,在等腰梯形ABCD中,AD//BC,AD=3 cm,BC=7 cm,∠B=60°,P为下底BC上一点(不与B、C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B.

(1)求证:△ABP∽△PCE;
(2)求等腰梯形的腰AB的长;
(3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求出BP的长,如果不存在,请说明理由.
如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:
,
).

某汽车销售公司6月份销售,某厂家的汽车,在一定范围内,每辆汽车的售价与销售量有如下关系:若当月仅售出1辆汽车时,则该辆汽车的进价为27万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆;月底厂家根据销售量一次性返利给销信公司,销售10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,每辆返利1万元.
(1)若该公司当月售出3辆汽车,则每辆汽车的进价为多少万元;
(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车(盈利=销售利润+返利)?
