(本题12分)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:

(1) 直接写出甲骑自行车的速度 ;乙骑自行车的速度 ;
(2) 求出点M的坐标,并解释该点坐标所表示的实际意义;
(3) 若两人之间保持的距离不超过2km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.
(本题12分)已知:如图1,点D是边长为2的等边△ABC边BC所在直线上的一动点,从点B向C方向运动,以AD为边向右侧作等边△ADE。
(1)连接CE,若点D在边BC上时,易知线段CE 、CD、AC三者之间的关系为CE+CD=AC; 如图2当点D在C的右侧时,试探索线段CE 、CD、AC三者之间的数量关系,并说明理由。
(2如图1,当点D从B运动到C时,①直接写出△CDE周长的最小值。②直接写出点E的运动路径长。
(3)若将题目中条件“等边△ADE”改为“满足∠ADE=60°与等边△ABC的外角平分线交于点E”,那么CE与BD还相等吗?如图3请作出判断并给出说明。



图1 图2 图3
(本题10分)某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:
甲印刷社收费y(元)与印制数x(张)的函数关系如下表:
印制x(张)  | …  | 100  | 200  | 300  | …  | 
收费y(元)  | …  | 15  | 30  | 45  | …  | 
乙印刷社的收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.
(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;
(2)兴趣小组决定制作宣传单(已知印数超过500张),若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?并说明理由。
(本题10分)已知:如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.CM⊥AE,垂足是F, 交AD于N,交AB于M,连接ME。
      
(1)求证:ME⊥BC;
(2)若AB=
,试求ME的长。
(本题8分) 求一个正数的算术平方根,有些数可以直接求得,如
,有些数则不能直接求得,如
,但可以通过计算器求. 还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:
n  | 16  | 0.16  | 0.0016  | 1600  | 160000  | …  | 
  | 4  | 0.4  | 0.04  | 40  | 400  | …  | 
(1)表中所给的信息中,你能发现什么规律?(请将规律用文字表达出来)
(2)运用你发现的规律,探究下列问题:已知![]()
1.435,求下列各数的算术平方根:
①0.0206
           ;        ②20600
               ;       
(3)根据上述探究过程类比研究一个数的立方根已知![]()
1.260,则![]()
      
(本题8分)如图,在平面直角坐标系中,
、
均在边长为1的正方形网格格点上.

(1) 在网格的格点中,找一点C,使△ABC是直角三角形,且三边长均为无理数
(只画出一个,并涂上阴影);
(2) 若点P在图中所给网格中的格点上,△APB是等腰三角形,
满足条件的点P共有 个;
(3) 若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标
