A为数轴上表示2的点,将点A沿数轴向左平移7个单位到点B,再由B向右平移6个单位到点C,则点C所表示的数是( )
A.11 B.1 C.2 D.3
下列说法不正确的是( )
A.0既不是正数,也不是负数
B.互为相反数的两个数的和为0
C.互为倒数的两个数的和为1
D.0的绝对值是0
如图是一个正方体的表面展开图,上面标有“我、爱、七、十、一、中”六个字,图中“爱”对面的字是( )

A.七 B.一 C.十 D.中
在0,-2,1,6这四个数中,最小的数是( )
A.6 B.1 C.-2 D.0
如图,∠MON=90°,A、B分别是OM、ON上的点,OB=4.点C是线段AB的中点,将线段AC以点A为旋转中心,沿顺时针方向旋转90°,得到线段AD,过点B作ON的垂线
.
(1)当点D恰好落在垂线
上时,求OA的长;
(2)过点D作DE⊥OM于点E,将(1)问中的△AOB以每秒2个单位的速度沿射线OM方向平移,记平移中的△AOB为△
,当点O′与点E重合时停止平移.设平移的时间为t秒,△
与△DAE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;
(3)在(2)问的平移过程中,若
与线段
交于点P,连接
,
,
,是否存在这样的t,使△
是等腰三角形?若存在,求出t的值;若不存在,请说明理由.

如图,在平面直角坐标系中,二次函数
的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(
,
),与y轴交于C(
,
)点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的解析式;
(2)若抛物线的顶点为点D,求△BCD的面积;
(3)设M是(1)所得抛物线上第四象限内的一个动点,过点M作直线l⊥x 轴于点F,交直线BC于点N。试问:线段MN的长度是否存在最大值?若存在,求出它最大值及此时M点的坐标;若不存在,请说明理由.
