(本题满分8分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.

(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
(本题满分7分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=xm.

(1)若花园的面积为192m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
(本题满分6分)如图,△ABC 的顶点A、B在⊙O上,边BC与⊙O 交于点D.①AB=AC;②BD=DC;③AB是⊙O的直径.此三个条件中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②
③;①③
②;②③
①.

(1)以上三个命题是真命题的为(直接作答) ;
(2)请选择一个真命题进行证明(先写出所选命题,然后证明).
(本题满分6分)已知二次函数
.
(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;
(2)若该二次函数图象与x轴的交点为A,B,求△ABC的面积.
(本题满分5分)已知关于
的一元二次方程方程
有两个不相等的实数根.
(1)求
的取值范围;
(2)当
取最大整数时,不解方程直接写出方程的两根之和与两根之积.
(本题满分5分)解方程:![]()
