⊙A半径为5,圆心A的坐标为(1,0),点P的坐标为(-2,4),则点P与⊙A的位置关系是( )
A.点P在⊙A上 B.点P在⊙A内
C.点P在⊙A外 D.点P在⊙A上或外
用配方法解方程
时,原方程应变形为( )
A.
B.
C.
D.![]()
下列根式中,与
是同类二次根式的是 ( )
A.
B.
C.
D.![]()
已知△ABC中,∠C=90°,AB=10,AC=6,点O是AB的中点,将一块直角三角板的直角顶点与点O重合并将三角板绕点O旋转,图中的M、N分别为直角三角板的直角边与边AC、BC的交点.


(1)如图①,当点M与点A重合时,求BN的长.
(2)当三角板旋转到如图②所示的位置时,即点M在AC上(不与A、C重合),
①猜想图②中
、
、
、
之间满足的数量关系式,并说明理由.
②若在三角板旋转的过程中满足CM=CN,请你直接写出此时BN的长.
如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒1cm,设出发的时间为t秒.问t为何值时,△BCP为等腰三角形?

如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.

(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?
(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?
