有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.

(1)用画树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:


(1)在这次评价中,一共抽查了 名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;
(3)请将频数分布直方图补充完整;
(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?
如图,在□ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.

(1)解方程:
; (2)解方程组:
.
(1)(-3)2-
+(-1)0+2cos30º; (2)化简:
.
如图,在反比例函数
位于第一象限内的图象上取一点P1,连结OP1,作P1A1^x轴,垂足为A1,在OA1的延长线上截取A1 B1= OA1,过B1作OP1的平行线,交反比例函数
的图象于P2,过P2作P2A2^x轴,垂足为A2,在OA2的延长线上截取A2 B2= B1A2,连结P1 B1,P2 B2,则
的值是 .

