如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD的长;
(2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;
(3)如图②,连接DE,当t为何值时,△DEF为直角三角形?
(4)如图③,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形AEA′D为菱形?

观察下列等式:
①
;
②
;
③
;
……
回答下列问题:
(1)仿照上列等式,写出第n个等式: ;
(2)利用你观察到的规律,化简:
;
(3)计算:![]()
如图,M、N是正方形ABCD边AB、CD上两动点,连接MN,将四边形BCNM沿MN折叠,使点B落在AD边上点E处、点C落在点F.
(1)求证:BE平分∠AEF;
(2)求证:C△EDG=2AB(注:C△EDG表示△EDG的周长)

如图,Rt△ABC中,分别以AB、AC为斜边,向△ABC的内侧作等腰Rt△ABE、Rt△ACD,点M是BC的中点,连接MD、ME.
(1)若AB=8,AC=4,求DE的长;
(2)求证:AB-AC=2DM.

如图,在四边形ABCD中,∠ABC=90°,AB=3
,BC=
,DC=12,AD=13,求四边形ABCD的面积.

如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.

