满分5 > 初中数学试题 >

在直角坐标系xOy中,已知点P是反比例函数y=(x>0)图象上一个动点,以P为圆...

在直角坐标系xOy中,已知点P是反比例函数y=满分5 manfen5.com(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.

(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.

(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:

①求出点A,B,C的坐标.

②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的满分5 manfen5.com?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.

满分5 manfen5.com

 

 

(1) 四边形OKPA是正方形;(2)A(0, ),B(1,0),C(3,0);(3);(0,),(3,0),(4,),(7,8). 【解析】 试题分析:(1)四边形OKPA是正方形.当⊙P分别与两坐标轴相切时,PA⊥y轴,PK⊥x轴,x轴⊥y轴,且PA=PK,可判断结论; (2)①连接PB,设点P(x,),过点P作PG⊥BC于G,则半径PB=PC,由菱形的性质得PC=BC,可知△PBC为等边三角形,在Rt△PBG中,∠PBG=60°,PB=PA=x,PG=,利用sin∠PBG=,列方程求x即可; ②求直线PB的解析式,利用过A点或C点且平行于PB的直线解析式与抛物线解析式联立,列方程组求满足条件的M点坐标即可. (1)四边形OKPA是正方形. 证明:∵⊙P分别与两坐标轴相切, ∴PA⊥OA,PK⊥OK. ∴∠PAO=∠OKP=90°. 又∵∠AOK=90°, ∴∠PAO=∠OKP=∠AOK=90°. ∴四边形OKPA是矩形. 又∵AP=KP, ∴四边形OKPA是正方形. (2)①连接PB,设点P的横坐标为x,则其纵坐标为. 过点P作PG⊥BC于G. ∵四边形ABCP为菱形, ∴BC=PA=PB=PC(半径). ∴△PBC为等边三角形. 在Rt△PBG中,∠PBG=60°,PB=PA=x, PG= sin∠PBG=,即=. 解之得:x=±2(负值舍去). ∴PG=,PA=BC=2.P(2, ) 易知四边形OGPA是矩形,PA=OG=2,BG=CG=1, ∴OB=OG-BG=1,OC=OG+GC=3. ∴A(0, ),B(1,0),C(3,0). ②设二次函数解析式为:y=ax2+bx+c. 据题意得: 解之得:. ∴二次函数关系式为:y=x2− x+ 设直线BP的解析式为:y=ux+v,据题意得:解之得:. ∴直线BP的解析式为:y= x-, 过点A作直线AM∥BP,则可得直线AM的解析式为:y=x+. 解方程组: 得:;. 过点C作直线CM∥PB,则可设直线CM的解析式为:y=x+t. ∴0=3+t. ∴t=−3. ∴直线CM的解析式为:y=x−3. 解方程组: 得:;.. 综上可知,满足条件的M的坐标有四个,分别为:(0,),(3,0),(4,),(7,8). 考点: 二次函数综合题.  
复制答案
考点分析:
相关试题推荐

(1)在图①的半径为R的半圆O内(含弧),求出一边落在直径MN上的最大的正三角形的面积?

(2)在图②的半径为R的半圆O内(含弧),求出一边落在直径MN上的最大的正方形的面积?

问题解决

(3)如图③,现有一块半径R=6的半圆形钢板,是否可以裁出一边落在MN上的面积最大的矩形?若存在,请说明理由,并求出这个矩形的面积;若不存在,说明理由?

满分5 manfen5.com

 

 

查看答案

小明遇到这样一个问题:“如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.”

    分析时,小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于 点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)

请回答:

(1)若将上述四个等腰直角三角形拼成一个正方形(无缝隙不重叠),则这个正方形的边长为_______

(2)求正方形MNPQ的面积.

(3)参考小明思 考问题的方法,解决问题:

如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=满分5 manfen5.com,则AD的长为_______.

满分5 manfen5.com

 

 

查看答案

温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.

(1)当n=200时,

①根据信息填表:

 

A地

B地

C地

合计

产品件数(件)

x

 

2x

200

运费(元)

30x

 

 

 

 

②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?

(2)若总运费为5800元,求n的最小值.

 

查看答案

在某张航海图上,标明了三个观测点的坐标,如图,O(0,0)、B(6,0)、C(6,8),由三个观测点确定的圆形区域是海洋生物保护区.

(1)求圆形区域的面积;

(2)某时刻海面上出现-渔船A,在观测点O测得A位于北偏东45°,同时在观测点B测得A位于北偏东30°,求观测点B到A船的距离.(满分5 manfen5.com≈1.7,保留三个有效数字);

(3)当渔船A由(2)中位置向正西方向航行时,是否会进入海洋生物保护区?通过计算回答。

学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!

 

 

查看答案

为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).

根据上述信息,解答下列各题:

(1)该班级女生人数是__ ,女生收看“两会”新闻次数的中位数是__

(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;

(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,根据你所学过的统计知识,选择有关统计量,来比较该班级男、女生收看“两会”新闻次数的波动大小.

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.