下列图形中,既是轴对称图形,又是中心对称图形的是( )




A. B. C. D.
无锡梅园是全国著名的赏梅胜地之一.近年来,梅园的植梅规模不断扩大,新的品种不断出现,如今的梅园的梅树约15000株,这个数可用科学记数法表示为 ( )
A.
B.
C.
D.![]()
下列运算中,结果正确的是( )
A.a
÷a
=a
B.(2ab
)
=2a
b![]()
C.a·a
=a
D.(a+b)
=a
+b![]()
9的算术平方根是( )
A.3 B.±3 C.
D.±![]()
如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.
(1)求抛物线的解析式;
(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围;
(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2-(m+3)y+
(5m2-2m+13)=0 (m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.

已知,等边△ABC边长为6,P为BC边上一点,且BP=4,点E、F分别在边AB、AC上,且∠EPF=60°,设BE=x,CF=y.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)①若四边形AEPF的面积为
时,求x的值.
②四边形AEPF的面积是否存在最大值?若存在,请求出面积的最大值及此时x的值;若不存在,请说明理由.

