如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.

(1)当∠BQD=30°时,求AP的长;
(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.

求证:AM=AN.
如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10
,AB=20.求∠A的度数.

如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.

已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.

如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积.(结果可保留根号)

