在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼睛距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )

A.(4
+1.6)m B.(12
+1.6)m
C.(4
+1.6)m D.4
m
如图,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为 ( )

A.
B.
C.
D.3
如图,点A、B、C在⊙O上,∠ACB=30°,则sin∠AOB的值是( )

A.
B.![]()
C.
D.![]()
先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( )

A.5cosα B.![]()
C.5sinα D.![]()
如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.

(1)当t为何值时,∠AMN=∠ANM?
(2)当t为何值时,△AMN的面积最大?并求出这个最大值.
已知:如图,在△ABC中,∠C=90°,点D、E分别在边AB、AC上,DE∥BC,DE=3,BC=9.

(1)求
的值;
(2)若BD=10,求sin∠A的值.
