阅读下列文字与例题:
将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.
例如:(1)am+an+bm+bn
=(am+bm)+(an+bn)
=m(a+b)+n(a+b)
=(a+b)(m+n)
(2)x2-y2-2y-1
=x2-(y2+2y+1)
=x2-(y+1)2
=(x+y+1)(x-y-1)
试用上述方法分解因式a2+2ab+ac+bc+b2.
阅读下列材料,你能得到什么结论?并利用(1)的结论分解因式.
(1)形如x2+(p+q)x+pq型的二次三项式,有以下特点:①二次项系数是1;②常数项是两个数之积;③一次项系数是常数项的两个因数之和,把这个二次三项式进行分解因式,可以这样来【解析】
x2+(p+q)x+pq=x2+px+qx+pq
=(x2+px)+(qx+pq)=x(x+p)+q(x+p)
=(x+p)(x+q).
因此,可以得x2+(p+q)x+pq=________.
利用上面的结论,可以直接将某些二次项系数为1的二次三项式分解因式.
(2)利用(1)的结论分解因式:
①m2+7m-18;
②x2-2x-15.
已知
+
=
(a≠b),求
-
的值.
先化简,再求值:
÷(x+1)其中x=
.
先化简、再求值
÷
,其中x=
+1.
先化简,再求值
÷
,其中x满足x2-x-1=0.
