掷一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子,如图。观察向上的一面的点数,下列属必然事件的是

A.出现的点数不会是0 B.出现的点数是7
C.出现的点数是2 D.出现的点数为奇数
4的平方根是
A.2 B.±2 C.16 D.±16
下列哪个图形是中心对称图形

A B C D![]()
如图,已知抛物线y=2x2-2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.
(1)写出以A,B,C为顶点的三角形面积;
(2)过点E(0,6)且与x轴平行的直线l1与抛物线相交于M、N两点(点M在点N的左侧),以MN为一边,抛物线上的任一点P为另一顶点做平行四边形,当平行四边形的面积为8时,求出点P、N的坐标;
(3)过点D(m,0)(其中m>1)且与x轴垂直的直线l2上有一点Q(点Q在第一象限),使得以Q,D,B为顶点的三角形和以B,C,O为顶点的三角形相似,求线段QD的长(用含m的代数式表示).

已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.

(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).
阅读下面的例题,并回答问题.
【例题】解一元二次不等式:x2-2x-8>0.
【解析】
对x2-2x-8分解因式,得x2-2x-8=(x-1)2-9=(x-1)2-32=(x+2)(x-4),
∴(x+2)(x-4)>0.由“两实数相乘,同号得正,异号得负”,可得
①或
②
解①得x>4;解②得x<-2.
故x2-2x-8>0的解集是x>4或x<-2.
(1)直接写出x2-9>0的解是 ;
(2)仿照例题的解法解不等式:x2+4x-21<0;
(3)求分式不等式:
≤0的解集.
